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Abstract Analytical properties of new complete or-
thonormal sets of Ya exponential-type orbitals (Ya-ETOs
where a=1, 0, �1, �2, …), introduced by the author as
finite linear combinations of Slater-type orbitals (STOs),
are studied. Addition and expansion theorems for Ya-
ETOs are obtained in both coordinate and momentum
representations. Using expressions of Ya-ETOs in terms
of STOs, the new methods are suggested to calculate
multicenter multielectron integrals over STOs.

Keywords Exponential-type orbitals · Slater-type
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Introduction

It is well known that multicenter molecular integrals,
which appear in the mathematical expressions of physical
and chemical properties of molecules, are evaluated by
the use of two types of orbitals: Gaussian-type orbitals
(GTOs) and exponential-type orbitals (ETOs). As em-
phasized in [1], GTOs do not allow an adequate
representation of important properties of the electronic
wavefunction, such as the cusps at the nuclei [2] and the
exponential decay at large distances. [3] For problems in
which the long part of the wavefunction or its behavior in
the neighborhood of the nuclei is important, it is desirable
to use ETOs, which describe the physical situation more
accurately than GTOs. Therefore, GTOs are inferior to
ETOs in the study of molecular properties. However,
difficulties in the calculation of multicenter molecular
integrals have restricted the use of ETOs in quantum
chemistry. As shown in the literature, there is now
renewed interest in developing efficient methods for
calculating molecular integrals by employing ETOs as

basis sets (see e.g. [4, 5, 6, 7, 8, 9, 10] and the
bibliography quoted in these papers). Thus, a thorough
investigation of the analytical properties of ETOs is an
urgent problem relevant to both the theory and practice of
calculations dealing with atoms, molecules, and solids.

Computations of matrix elements in the molecular
orbital (MO) linear combination of atomic orbitals
(LCAO) theory for ETOs, in both coordinate and
momentum representations, involve some difficulties, so
one has to look for the most expedient analytical methods.
On the other hand, the elaboration of algorithms for the
calculation of matrix elements in the MO LCAO theory
with Slater-type orbitals (STOs), which are a special case
of the ETOs, necessitates progress in the development of
methods to calculate multicenter integrals over ETOs.

The aim of this work is to present proofs for the
relevant addition and expansion theorems of Ya-ETOs, in
both the coordinate and momentum spaces, and to yield
methods for calculation of multicenter multielectron
integrals, which appear in MO LCAO theory in the Ya-
ETOs basis.

Expansion theorems for products of ETOs

Coordinate representation

The Ya-ETOs in the coordinate representation are defined
by [11]

Ya
nlm z;~rrð Þ ¼ Ra

nl z; rð ÞSlm q;jð Þ ð1Þ

Ra
nl z;~rrð Þ ¼ �1ð Þa 2zð Þ3 n� l� 1ð Þ!

2nð Þa nþ lþ 1� að Þ!½ �3

" #1=2

�

� 2zrð Þle�zrL2lþ2�a
nþ=þl�a 2zrð Þ ð2Þ

where a=1, 0, �1, �2, …, z is the screening parameter
0 < z <1ð Þ and Lp

q is the generalized Laguerre polyno-
mial. [12] The spherical harmonics Slm(q,f) in Eq. (1) are
determined by relation
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Slm q; fð Þ ¼ Pl mj j cos qð ÞFm fð Þ ð3Þ
where Pl|m| are normalized associated Legendre functions
[12] and for complex spherical harmonics (Slm�Ylm)

Fm fð Þ ¼ 1ffiffiffiffiffi
2p
p eimj ð4Þ

for real spherical harmonics

Fm fð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1þ dm0ð Þ

p cos mj jffor m � 0
sin mj jffor m < 0

�
ð5Þ

We notice that the definition of phases in this work for the
complex spherical harmonics Y�lm ¼ Yl�m

� �
differ from

the Condon–Shortley phases [13] by the sign factor (�1)m.
The Ya are transformed into the STOs by [11]

Ya
nlm z;~rrð Þ ¼

Xn

n0¼lþ1

wal
nn0cn0lm z;~rrð Þ ð6Þ

Ra
nl z;~rrð Þ ¼

Xn

n0¼lþ1

wal
nn0Rn0 z;~rrð Þ ð7Þ

where

wal
nn0 ¼ �1ð Þn

0�l�1 n0þlþ1ð Þ!
2nð Þa n0þlþ1�að Þ! Fn0þlþ1�a nþ lþ 1ð

�

�aÞFn0�l�1 n� l� 1ð Þ � Fn0�l�1 2n0ð Þ
�1=2

ð8Þ

cnlm z;~rrð Þ ¼ Rn z; rð ÞSlm q;jð Þ ð9Þ

Rn z; rð Þ ¼ 2zð Þnþ1=2 2nð Þ!½ ��1=2rn�1e�zr ð10Þ

Here cnlm z;~rrð Þ are the normalized STOs and Fs(n)=n!/
[s!(n�s)!] is the binomial coefficient.

Now we can obtain the expansion theorem for the
product of two Ya-ETOs by representing it as a finite sum
of Ya-ETO terms:

Ya�
nlm z;~rrð ÞYa

n0l0m0 z
0;~rrð Þ

¼ 2zð Þ3=2
Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�1

BaNLM
nlm;n0l0m0 z; z

0; zð ÞYa�
NLM z;~rrð Þ

ð11Þ

where z=z+z0and

BaNLM
nlm;n0l0m0 z; z

0; zð Þ ¼ 1

2zð Þ3=2

Z
Ya�

n0l0m0 z;~rrð Þ �

�Ya
n0l0m0 z

0;~rrð ÞYa
NLM z;~rrð Þd3~rr ð12Þ

Ya
nlm z;~rrð Þ ¼ n

zr

� �a

Ya
nlm z;~rrð Þ ¼ R

a
nl z; rð ÞSlm q; jð Þ ð13Þ

R
a
nl z; rð Þ ¼ n

zr

� �a

Ra
nl z; rð Þ ð14Þ

Here we have taken into account the orthonormality
relation of Ya

nlm�ETOswithYa
nlm�ETOs functions (see

Eq. (4) of [11]):Z
Ya�

nlm z;~rrð ÞYa
n0l0m0 z;~rrð Þd3~rr

¼
Z

Ya�
nlm z;~rrð Þ n0

zr

� �a

Ya
n0l0m0 z;~rrð Þd3~rr ¼ dnn0dll0dmm0

ð15Þ
Thus, the coefficients BaNLM

nlm;n0l0m0 are obtained by

multiplying Eq. (11) by Ya
N0L0M0 z;~rrð Þ and taking into

account the fact that the functions Ya
NLM z;~rrð Þ are

orthogonal with the weight N=zrð Þa.
It is easy to show that the Ya

nlm�ETOs are also
represented as finite linear combinations of STOs:

Ya
nlm z;~rrð Þ ¼ 2nð Þa

Xn

n0¼lþ1

wal
nn0

2 n0 � að Þð Þ!
2n0ð Þ!

� �1=2

�

� cn0�a lm z;~rrð Þ ð16Þ

Note that the scale parameter of the function
Ya

NLM z;~rrð Þ in Eq. (11) must be z=z+z´ , because of addition
of the exponents of the functions (2).

Now using Eqs. (6), (7), (16) and the result [14]

S�lm q; jð ÞSl0m0 q; jð Þ ¼
Xlþl0

L¼ l�l0j j

XL

M¼�l

2Lþ 1
4p

� �1=2

�

�CL Mj j lm; l0m0ð ÞAM
mm0S

�
LM q; jð Þ ð17Þ

we get from Eq. (12)

BaNLM
nlm;n0l0m0 z; z

0; zð Þ ¼ 2Lþ 1
4p

� �1=2

CL Mj j lm; l0m0ð ÞAM
mm0

� 2Nð Þa
Xn

k¼lþ1

Xn0

k0¼l0þ1

XN

K¼Lþ1

wal
nkw

al0
n0k0w

al
NK �

� k þ k0 þ K � a� 1ð Þ!
2kð Þ! 2k0ð Þ! 2Kð Þ!½ �1=2

z
z

� �kþ1=2 z0

z

� �k0þ1=2

ð18Þ

where

AM
mm0 ¼

dM;m�m0 for complex Slm

1ffiffi
2
p 2� hm�m0

mm0

			 			
 �1=2
dM;e m�m0j j

8<
:
þ 1ffiffiffi

2
p hmþm0

mm0 dM;e m�m0j j for real Slm: ð19Þ

Here the symbol e� emm’ may have the values €1 the
sign of which is determined by the product of the signs m
and m0 (the sign of zero is regarded as positive). The
symbol hm�m0

mm
0 may be have the values €1 and 0: if among

the indices m, m0 and m€ḿ there occurs a value equal to

136



zero, then hm�m0
mm0 is also zero; if all the indices differ from

zero, hm�m0
mm0 ¼ �1 and the sign is determined by the

product of the signs of m, ḿ and m€ḿ. Thus the
coefficients AM

mm0 differ from zero only with the values
M=m'�m', m+m'. Therefore, in the case of real spherical
harmonics in Eq. (17), we have two kinds of coefficients

CL m�m0j j and CL mþm0j j determined by

CL Mj j lm; l0m0ð Þ ¼ CL lm; l0m0ð Þ for Mj j ¼ m� m0j j
CL lm; l0 � m0ð Þ for Mj j ¼ mþ m0j j

�
ð20Þ

where CL(lm,l'm') is the known Gaunt coefficient.
As can be seen from Eqs. (11) and (18), the resulting

expansion of the product of Ya-ETOs is a finite sum of
Ya-ETOs terms, that is the expansion theorem for
complete orthonormal sets Ya-ETOs in the coordinate
representation.

Momentum representation

The Ya-ETOs and Ya�ETOs in the momentum repre-
sentation are defined as the Fourier transforms of the
functions (6) and (13), respectively:

Fa
nlm z;~kk

 �

¼ 2pð Þ�3=2
Z

e�i~kk~rrYa
nlm z;~rrð Þd3~rr ð21Þ

Fa
nlm z;~kk

 �

¼ 2pð Þ�3=2
Z

e�ik~rrYa
nlm z;~rrð Þd3~rr ð22Þ

Taking into account Eqs. (6) and (16) in Eqs. (21) and
(22) we obtain:

Fa
nlm z;~kk

 �

¼
Xn

n0¼lþ1

wal
nn0Un0lm z;~kk


 �
ð23Þ

Fa
nlm z;~kk

 �

¼ 2nð Þa
Xn

n0¼lþ1

wa l
nn0

2 n0 � að Þð Þ!
2n0ð Þ!

� �1=2

�

�Un0�alm z;~kk

 �

ð24Þ

where Unlm z;~kk

 �

is the Fourier transform of the STOs:

Unlm z;~kk

 �

¼ 2pð Þ�3=2
Z

e�i~kkrcnlm z; rð Þd3r ð25Þ

It should be noted that the Fourier transformations convert
the functions

Fa
nlm z;~kk

 �

; Fa
nlm z;~kk

 �

and Unlm z;~kk

 �

into the functions

Fa
nlm z;~rrð Þ;Fa

nlm z;~rrð Þand cnlm z;~rrð Þ :

Ya
nlm z;~rrð Þ ¼ 2pð Þ�3=2

Z
ei~kk~rrFa

nlm z;~kk

 �

d3~kk ð26Þ

Ya
nlm z;~rrð Þ ¼ 2pð Þ�3=2

Z
ei~kk~rrFa

nlm z;~kk

 �

d3~kk ð27Þ

cnlm z;~rrð Þ ¼ 2pð Þ�3=2
Z

ei~kk~rrUnlm z;~kk

 �

d3~kk ð28Þ

In order to calculate Unlm z;~kk

 �

, we use the known
expansion of ei~kk~rr into a series over the spherical
harmonics:

ei~kkr ¼ 4p
X1
l¼0

Xl

m¼�l

jl krð ÞSlm ~rr=rð Þ~SS�lm
~kk=k

 �

ð29Þ

where ~SSlm
~kk=k

 �

¼ �ið ÞlSlm
~kk=k

 �

is a modified spherical

harmonic in momentum space, jl(kr) is the spherical
Bessel function. The functions jl(kr) can be expressed in
terms of Bessel functions of the first kind in the form
[15]:

jl krð Þ ¼ p
2kr


 �1=2
Jlþ1=2 krð Þ ð30Þ

With the calculation of integral (25) we also take into
account the result [12]Z1
0

e�zrJlþ1=2 krð Þrnþ1=2dr

¼ 1ffiffiffi
p
p l! n� lð Þ! 2kð Þlþ1=2 x

z

� �nþlþ2

Clþ1
n�l xð Þ ð31Þ

where x ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k2

p
and Cb

n xð Þ is the Gegenbauer poly-
nomial defined by [12]

Cb
n xð Þ ¼

XE n=2ð Þ

s¼0

�1ð Þsdb
NS 2xð Þn�2s ð32Þ

where

E n=2ð Þ ¼ 1
2

n� 1
2

1� ð�1ð Þn
� �

and

db
ns ¼ Fb�1 b� 1þ n� sð ÞFs n� sð Þ ð33Þ

Substituting Eq. (29) into the integral in Eq. (25) and
using Eq. (31) one gets:

Unlm z;~kk

 �

¼ Qnl z; kð ÞSlm

~kk

k

 !
ð34Þ

where Qnl(z,k) is the radial part of STOs in the
momentum representation determined by

Qnl z; kð Þ ¼ 2nþlþ1l! n� lð Þ!
z3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p 2nð Þ!

p xnþ2 1� x2
� �1=2

Clþ1
n�l xð Þ ð35Þ

137



As can be seen from Eqs. (34) and (35), the radial part
of STOs in the momentum representation is determined
by the Gegenbauer polynomials.

Thus the resulting formulae for the Ya�ETOs
and Ya�ETOs in the momentum representation are

Fa
nlm z;~kk

 �

¼ Pa
nl z; kð ÞSlm

~kk

k

 !
ð36Þ

Fa
nlm z;~kk

 �

¼ n

zk

� �a

Fa
nlm z;~kk

 �

¼ Pa
nl z; kð ÞSlm

~kk

k

 !

ð37Þwhere

Pa
nl z; kð Þ ¼

Xn

n0¼lþ1

wal
nn0Qn0l z; kð Þ ð38Þ

Pa
nlm z; kð Þ ¼ 2pð Þa

Xn

n0¼lþ1

wal
nn0

2 n0 � að Þð Þ!
2n0ð Þ!

� �1=2

Qn0�al z; kð Þ
ð39Þ

It should be noted that the functions Fa
nlm z;~kk

 �

obtained from the Fourier transformation of Ya-ETOs
are orthonormal with the weight n=zkð Þa where a=1, 0,
�1, �2, ... :Z

Fa�
nlm z;~kk

 � n0

zk

� �a

Fa
n0l0m0 z;~kk


 �
d3~kk

¼
Z

Fa�
nlm z;~kk

 �

Fa
n0l0m0 z;~kk


 �
d3~kk ¼ dnn0dll0dmm0

ð40Þ
Thus, the Fourier transforms of Ya-ETOs in the

momentum representation are also complete orthonormal
sets of functions and are expressed in terms of Fourier
transforms of STOs by the finite linear combinations (see
Eqs. (23) and (24)).

Now we are able to obtain the expansion theorem for
the product of Ya-ETOs in the momentum representation.
Using the orthonormality relation (40) one gets the
following infinite series:

Fa�
nlm z;~kk

 �

Fa
n0l0m0 z;~kk


 �

¼ z
� ��3=2X1

N¼l

XN�1

L¼0

XL

M¼�L

DaNLM
nlm;n0l0m0 z; z0; z

� �
Fa�

NLM z;~kk

 �
ð41Þwhere

z ¼ zþ z0ð Þ=2and

DaNLM
nlm;n0l0m0 z; z0; z

� �
¼ 1

2p
2Lþ 1ð Þ1=2CL Mj j lm; l0m0ð ÞAM

mm0

� 2Nð Þa
Xn

s¼lþ1

Xn0

s0¼l0þ1

XN

S¼Lþ1

wal
nsw

al0
n0s0w

aL
NS �

� 2 S� að Þð Þ!½ �1=2

2Sð Þ!½ �1=2
QS�aL

sl;s0l0 z; z0; z
� �

ð42Þ

Here the coefficients QNL
nl;n0l0 z; z0; z

� �
are determined by

means of radial parts of STOs in the momentum
representation:

QNL
nl;n0l0 z; z0; z

� �
¼

ffiffiffiffiffi
2p
p

z
� �3=2

Z1
0

Qnl z; kð ÞQn0l0 z
0; kð ÞQNL z; k

� �
k2dk
ð43Þ

In the case where both the functions Fa
nlm

z;~kk

 �

and Fa
n00l0m0 z;~kk


 �
depend on the same parameter

z=z0, the infinite series (41) is reduced to the finite sum:

Fa�
nlm z;~kk

 �

Fa
n0l0m0 z;~kk


 �

¼ zð Þ�3=2
Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�l

DaNLM
nlm;n0l0m0F

a�
NLM z;~kk

 �

ð44Þ

It should be noted that for z=z0, the coefficients
DaNLM

nlm;n0l0m0 z; z0; z
� �

and QNL
nl;n0l0 z; z0; z

� �
determined by the

relations (42) and (43) do not depend on the parameters z,
i.e.

DaNLM
nlm;n0l0m0 ¼ DaNLM

nlm;n0l0m0 z; z; zð Þ and QNL
nl;n0l0 ¼ QNL

nl;n0l0 z; z; zð Þ

The relationships for QNL
nl;n0l0 are obtained in the Appendix.

The difficulty in the problem of the finite sum expansion
of the Fa product in the case where they depend on
different parameters zand z0, lies completely in the fact

that the function Fa
NLM z;~kk

 �

on the right-hand side of

Eq. (41) is represented by the parameter z 6¼ zþ z0:

Addition theorems for Ya and Fa functions

In order to obtain the addition theorems for Ya-ETOs in
coordinate and momentum spaces, we use the following
expansions of e�i~kk~rr and ei~kk~rr into series over the orbitals

Ya
nlm z;~rrð Þ and Fa

nlm z;~kk

 �

; respectively:

e�i~kkr ¼ 2pð Þ3=2
X
NLM

Fa
NLM z;~kk

 �

Ya�
NLM z;~rrð Þ ð45Þ

ei~kkr ¼ 2pð Þ3=2
X
NLM

Ya
NLM z;~rrð ÞFa�

NLM z;~kk

 �

ð46Þ

Equations (45) and (46) can easily be derived by means of
the orthonormality relations (15) and (40), and the Fourier
transformations (21), (22), (26) and (27).

Coordinate representation

Let us consider the Fourier transform of the function
Ya

nlm z;~rr �~RR
� �

;
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Ya
nlm z;~rr �~RR
� �

¼ 2pð Þ�3=2
Z

ei~kk ~rr�~RRð ÞFa
nlm z;~kk

 �

d3~kk

ð47Þ
Substituting the expansion (46) into the integral in (47),
one obtains:

Ya
nlm z;~rr �~RR
� �

¼
X
n0l0m0

Ya
n0l0m0 z

0;~rrð Þ
Z

e�i~kk~RR �

�Fa
nlm z;~kk

 �

Fa�
n0l0m0 z0;~kk


 �
d3~kk ð48Þ

Next we use the expansion (41) and Eq. (26) to give

Ya
nlm z;~rr �~RR
� �

¼ 2p
z

� �3=2X1
n0¼1

Xn0�1

l0¼0

Xl0

m0¼�l0
�

�
X1
N¼1

XN�1

L¼0

XL

M¼�L

DaNLM
nlm;n0l0m0 z; z0; z

� �
Ya�

NLM z;~RR
� � !

�

�Psian0l0m0 z
0;~rrð Þ ð49Þ

The expansion (49) enables one to formulate a theorem on
the representation of Ya-ETOs, depending on the parameter
z, in terms of the functions depending on another parameter
ź. This representation may be useful in applications.

Thus, we have proven the desired addition theorem for
Ya-ETOs in coordinate space: any Ya-ETOs with the
difference of the radius vectors,~rr �~RR; as its argument is
expanded into a series over products of Ya-ETOs
depending on~rr and ~RR; separately.

Momentum representation

In order to obtain the addition theorem for Ya-ETOs in
momentum space, we consider the Fourier transform of
ETOs,

Fa
nlm z;~kk �~pp

 �

¼ 2pð Þ�3=2
Z

eik ~rr�~ppð Þ~rrYa
nlm z;~rrð Þd3~rr ð50Þ

Applying expansion (45) to the exponential, one has

Fa
nlm z;~kk �~pp

 �

¼
X
n0l0m0

Fa
n0l0m0 z0;~kk


 �Z
ei~pp~rr�

�Ya
nlm z;~rrð ÞY�an0l0m0 z

0;~rrð Þd3~rr ð51Þ
Now we take into account expansion (11) and Eq. (21).
Then, finally, we obtain:

Fa
nlm z;~kk �~pp

 �

¼ 4pzð Þ3=2
X1
n0¼1

Xn0�1

l0¼0

Xl0

m0¼�l0
�

�
Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�L

BaNLM
nlm;n0l0m0 z; z

0; zð ÞFa�
NLM z;~ppð Þ

 !
�

�Fa
n0l0m0 z0;~kk


 �
ð52Þ

Here the coefficients BaNLM
nlm;n0l0m0 z; z

0; zð Þ for z ¼ z0 do

not depend on the parameter z, i.e. BaNLM
nlm;n0l0m0 �

BaNLM
nlm;n0l0m0 z; z; 2zð Þ:

We notice that the function Fa
nlm z; ~kk �~pp

 �

is factor-

ized in the Fa functions depending on~kk and ~pp; separately,
and on the parameters z and z =z+ z´ , respectively. The
parameter z´ is arbitrary and may be chosen appropriately
for any particular calculation in the theory of molecules.

Thus, we have considered the addition and expansion
theorems for Ya-ETOs, in both coordinate and momen-
tum spaces, and have found a relationship between them.

Arbitrary multicenter multielectron integrals
of Ya-ETOs

We are now able to consider the multicenter multielectron
integrals of Ya-ETOs appearing in the MO LCAO method
of the quantum theory of molecules. Since the Ya-ETOs
are expressed in terms of STOs, according to Eq. (6),
these integrals can be reduced to multicenter multielec-
tron integrals over STOs. Using the translation formulae
of STOs obtained in [11] with the help of Ya-ETOs, one
can derive the series expansion formulae for the multi-
center molecular integrals with an arbitrary s-electron
operator (s=1, 2, 3, …) in terms of overlap integrals with
the same screening parameter of STOs.

Our next subject is the overlap integrals over STOs
with the same screening parameter, which occur in the
multicenter multielectron integrals of Ya-ETOs. The
integral under consideration has the form

Snlm;n0l0m0 z;~RR
� �

¼
Z

c�nlm z;~rrð Þcn0l0m0 z;~rr �~RR
� �

d3~rr ð53Þ

For the evaluation of integral (53), we use Eq. (28) for
Fourier transform of STOs. Then we obtain:

Snlm;n0l0m0 z;~RR
� �

¼
Z

e�i~kk~RRU�nlm z;~kk

 �

�

�Un0l0m0 z;~kk

 �

d3~kk ð54Þ

where Unlm z;~kk

 �

is determined by Eqs. (34) and (35).

Now we expand the product of two functions on the
right-hand side of Eq. (54) in terms of the Ya-ETOs in the
momentum representation:

U�nlm z;~kk

 �

Un0l0m0 z;~kk

 �

¼ 2pzð Þ�3=2
Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�l

MaNLM
nlm;n0l0m0F

a�
NLM z;~kk

 �

ð55Þ
where a=1, 0, �1, �2, … and

MaNLM
nlm;n0l0m0 ¼

Z
U�nlm z;~kk


 �
Un0l0m0 z;~kk


 �
�

�Fa
NLM z;~kk

 �

d3~kk ð56Þ
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Here we have taken into account the orthonormality
relation (40).

Using Eq. (23) one can prove the following identity:

Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�l

MaNLM
nlm;n0l0m0F

a�
NLM z;~kk

 �

¼
Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�l

Xnþn0þ1

N0¼N

waL
N0NMaN0LM

nlm;n0l0m0

 !
�

�U�NLM z;~kk

 �

ð57Þ

Now we take into account Eq. (24) in Eqs. (56) and
(57). Then we finally obtain for the expansion of the
product of Fourier transforms in terms of their linear
combinations the following relation:

U�nlm z;~kk

 �

Un0l0m0 z;~kk

 �

¼ 2pzð Þ�3=2
Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�L

�

�
Xnþn0þ1

N0¼Lþ1

WaL
NN0 nþ n0 þ 1ð ÞTN0LM

nlm;n0l0m0

 !
Ua�

NLM z;~kk

 �

ð58Þ
where

Wal
nk Nð Þ ¼ 2 k � að Þ½ �!

2kð Þ!

� �1=2 XN

n0¼max n;kð Þ
2n0ð Þawal

n0nw
al
n0k

ð59Þ

TNLM
nlm;n0l0m0 ¼ 2pzð Þ

3
2

Z
U�nlm z;~kk


 �
Un0l0m0 z;~kk


 �
�

�UNLM z;~kk

 �

d3~kk ¼ �1ð Þ l�l0�Lð Þ=2 2p 2Lðð

þ1ÞÞ1=2CL Mj j lm; l0m0ð ÞAM
mm0Q

NL
nl;n0l0 ð60Þ

where QNL
nl;n0l0 is determined by Eq. (69) of the Appendix.

Now we are able to calculate the overlap integrals of
STOs with the same screening parameter. Substitute
expansion (58) into the integral in (54) and use Eq. (28)
and the result is

Snlm;n0l0m0 z;~RR
� �

¼ z�3=2
Xnþn0þ1

N¼1

XN�1

L¼0

XL

M¼�l

gaNLM
nlm;n0l0m0c

�
NLM z;~RR
� �

ð61Þ

where a=1,0,�1,�2,… and

gaNLM
nlm;n0l0m0 ¼

Xnþn0þ1

N0¼1

Wal:
NN0 nþ n0 þ 1ð ÞTN0LM

nlm;n0l0m0 ð62Þ

Thus, the sets of formulae for overlap integrals with
the same screening parameter are determined solely from
the linear combination of STOs.

On the basis of the addition and expansion formulae
obtained in this paper, we constructed a program for
evaluating the multicenter electron-repulsion integrals
with STOs:

Ip1p0i:p2p02
z1; z01; z2; z02;~RRca;~RRba;~RRda

� �
¼
Z

c�pi
z1;~rra1ð Þcp01

z01;~rrc1
� �

�

� 1
r21

cp2
z2;~rrb2ð Þc�p02

z02;~rrd2
� �

dV1dV2 ð63Þ

where

pi � nilimi; p0i � n0il
0
im
0
i; ~RRgh ¼ ~RRh �~RRg;

~rrgi ¼~rri �~RRg i ¼ 1; 2 and g ¼ a; b; c; dð Þ; ~rri and ~RRg

are the radius vectors of electron and nucleus relative to
the molecule-fixed axes centered at a reference origin O.

The results of the calculation in atomic units for the
two-center hybrid, two-center Coulomb, and two-center
exchange electron-repulsion integrals obtained with a
Pentium III 800 MHz computer (using the TURBO
PASCAL 7.0 language) are shown in Tables 1 and 2. The
comparative values obtained from the expansion of
different Ya-ETOs are shown in these tables. We see
from the tables that the computation time and accuracy of
the computer results for different expansion formulae
obtained from Y0-ETOs, Y1-ETOs, and Y-1-ETOs are
satisfactory.

Table 1 Comparison of methods of computing two-center electron-repulsion integrals over STOs obtained in the molecular coordinate
system in a.u. for N=Ń=15, qca=120�, fca=180�, qdb=120�, fdb=180�, qba=30�, fba=90�

n1 l1 m1 z1 n01 l01 m01 z01 n2 l2 m2 z2 n02 l02 m02 z02
2 1 0 6.5 2 1 0 4.4 2 1 0 4.6 2 1 0 3.1
2 1 1 5.6 2 1 1 2.4 2 1 0 8.4 2 1 0 5.3
2 1 1 8.5 2 1 1 6.2 2 1 1 7.8 2 1 1 6
3 2 1 4.8 3 2 1 2.6 3 1 1 3.7 2 1 1 1.6
2 1 0 6.4 2 1 0 4.2 2 1 0 5.3 2 0 0 3.1
2 1 1 8.6 2 1 1 5.4 2 1 1 7.5 2 1 1 5.3
3 2 0 10.6 3 2 0 7.5 2 1 1 9.7 2 1 1 8.5
3 2 1 8.1 3 2 1 5.7 2 1 1 6.9 2 1 1 4.8
2 1 0 5.8 2 1 0 6.3 2 1 0 5.8 2 1 0 6.3
2 1 0 7.5 1 0 0 4.6 2 1 0 7.5 1 0 0 4.6
2 1 1 8.7 2 1 0 6.4 2 1 1 8.7 2 1 0 6.4
2 1 1 5.8 2 1 1 2.6 2 1 1 5.8 2 1 1 2.6
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Appendix

As can be seen from Eqs. (60), (61) and (62), the overlap
integrals with the same screening parameter are expressed
through the integral

QNL
nl;nT ¼

ffiffiffi
p
p

z3=2
Z1
0

Qnl z; kð ÞQn0l0 z; kð ÞQNL z; kð Þk2dk

ð64Þ
where Qnl(z,k) is determined by the Gegenbauer polyno-
mials (Eq. (35)). Using Eqs. (32) and (33), we can easily
establish for the products of Gegenbauer polynomials the
following relations:

Cb
n xð ÞCb0

n0 xð Þ ¼
XE n=2ð ÞþE n0=2ð Þ

s¼0

�1ð Þsdbb0
nn0s 2xð Þnþn0�2s ð65Þ

Cb
n xð ÞCb0

n0 xð ÞCb00
n00 xð Þ

¼
XE n=2ð ÞþE n0=2ð ÞþE n00=2ð Þ

s¼0

�1ð Þsdbb0b00
nn0n00s 2xð Þnþn0þn00�2s

ð66Þ
where

dbb0
nn0s ¼

XE n=2ð Þ

m¼0

db
nmdb0

n0s�m
ð67Þ

dbb0b00
nn0n00s ¼

XE n=2ð Þ

m¼0

db
nmdb0b00

n0n00s�m
ð68Þ

Now using Eq. (66) and the result [12]

Z1

0

x2nffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼ 2n� 1ð Þ!

22nn! n� 1ð Þ! p ð69Þ

we get from Eq. (64)

QNL
nl;n0l0 ¼ F1 nð ÞFl0 n0ð ÞFL Nð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fn 2nð ÞFn0 2n0ð ÞFN 2Nð Þ

ph i�1

�
Xk

s¼0

�1ð Þsdlþ1;l0þ1;Lþ1
n�l;n0�l0;n�L;s

bnþn0þNþ1�g�s;g

ð70Þwhere

k ¼ E
n� l

2

� �
þ E

n0 � l0

2

� �
þ E

N � L

2

� �
and

bi;j ¼
Xjþ1

m¼0

�1ð Þm22jþ1�2mFm jþ 1ð ÞFiþm 2 iþ mð Þ � 1ð Þ
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Table 2 Comparison of methods of computing two-center electron-repulsion integrals over STOs obtained in the molecular coordinate
system in a.u. for N=N’=15, qca=120�, fca=180�, qdb=120�, fdb=180�, qba=30�, fba=90�

Rca Rdb Rba Eq. (<equationcite>63</
equationcite>), a=1

Eq. (<equationcite>63</
equationcite>), a=0

Eq. (<equationcite>63</
equationcite>), a=�1

CPU (ms)

0 0.4 0 9.5797637176E�1 9.5797637176E�3 9.5797637175E�3 27.1
0 2.8 0 �1.8679407277E�5 �1.8679407264E�5 �1.8679407258E�5 42.2
0 3.2 0 4.4165329011E�7 4.4165329113E�7 4.4165329314E�7 47.2
0 1.3 0 2.5574326839E�1 2.5574326815E�1 2.5574326827E�1 65.8
0 0 0.3 �1.3317612696E�1 �1.3317612694E�1 �1.3317612677E�1 23.4
0 0 3.3 2.4435258748E�1 2.4435258746E�1 2.4435258729E�1 29.0
0 0 4.3 2.0741168617E�1 2.0741168617E�1 2.0741168625E�1 45.3
0 0 7.6 1.0881681470E�1 1.0881681467E�1 1.0881681455E�1 53.8
0.8 0.8 0 1.3429866341E�2 1.3429866361E�2 1.3429866237E�2 65.5
2 2 0 2.2546218186E�5 2.2546218241E�5 2.2546218311E�5 57.4
2.5 2.5 0 4.5310176221E�5 4.5310176184E�5 4.5310176400E�5 68.7
1.4 1.4 0 5.2992746237E�2 5.2992746177E�2 5.2992745732E�2 82.6
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