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Abstract Analytical properties of new complete or-
thonormal sets of W exponential-type orbitals (PY*-ETOs
where o=1, 0, -1, =2, ...), introduced by the author as
finite linear combinations of Slater-type orbitals (STOs),
are studied. Addition and expansion theorems for ¥Y*-
ETOs are obtained in both coordinate and momentum
representations. Using expressions of WY*ETOs in terms
of STOs, the new methods are suggested to calculate
multicenter multielectron integrals over STOs.
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Introduction

It is well known that multicenter molecular integrals,
which appear in the mathematical expressions of physical
and chemical properties of molecules, are evaluated by
the use of two types of orbitals: Gaussian-type orbitals
(GTOs) and exponential-type orbitals (ETOs). As em-
phasized in [I], GTOs do not allow an adequate
representation of important properties of the electronic
wavefunction, such as the cusps at the nuclei [2] and the
exponential decay at large distances. [3] For problems in
which the long part of the wavefunction or its behavior in
the neighborhood of the nuclei is important, it is desirable
to use ETOs, which describe the physical situation more
accurately than GTOs. Therefore, GTOs are inferior to
ETOs in the study of molecular properties. However,
difficulties in the calculation of multicenter molecular
integrals have restricted the use of ETOs in quantum
chemistry. As shown in the literature, there is now
renewed interest in developing efficient methods for
calculating molecular integrals by employing ETOs as
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basis sets (see e.g. [4, 5, 6, 7, 8, 9, 10] and the
bibliography quoted in these papers). Thus, a thorough
investigation of the analytical properties of ETOs is an
urgent problem relevant to both the theory and practice of
calculations dealing with atoms, molecules, and solids.

Computations of matrix elements in the molecular
orbital (MO) linear combination of atomic orbitals
(LCAO) theory for ETOs, in both coordinate and
momentum representations, involve some difficulties, so
one has to look for the most expedient analytical methods.
On the other hand, the elaboration of algorithms for the
calculation of matrix elements in the MO LCAO theory
with Slater-type orbitals (STOs), which are a special case
of the ETOs, necessitates progress in the development of
methods to calculate multicenter integrals over ETOs.

The aim of this work is to present proofs for the
relevant addition and expansion theorems of WY*-ETOs, in
both the coordinate and momentum spaces, and to yield
methods for calculation of multicenter multielectron
integrals, which appear in MO LCAO theory in the ¥*-
ETOs basis.

Expansion theorems for products of ETOs

Coordinate representation

The W*-ETOs in the coordinate representation are defined
by [11]

\{l:flm«:? ?) = RZI(C? r)Slm<97(p) (1)
1/2
2073 (n—1-1)!
Ry 7) = (- G L
2n)*l(n+1+1—-a)!]
() e L (24 (2)
where a=1, 0, -1, =2, ..., { is the screening parameter

(0 < < o0)and Ll is the generalized Laguerre polyno-

mial. [12] The spherical harmonics S,,(6,¢) in Eq. (1) are
determined by relation
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where Py, are normalized associated Legendre functions
[12] and for complex spherical harmonics (S;,=Y},)

= Py (cos 0)D,,(¢)

1 .
D, (p) = ——e"" 4
0 = 7 @
for real spherical harmonics
B 1 cos|m|¢for m >0
©n(9) = (1 =+ S0) { sinjm|gfor m <0 )

We notice that the definition of phases in this work for the
complex spherical harmonics (Y}, = Y._,,) differ from

the Condon—Shortley phases [13] by the sign factor (—1)".
The W* are transformed into the STOs by [11]

nlm §>r) Z wnn’Xn/lm gv (6)
=I+1
Z o™ R/(¢,7) (7)
n/=I1+1
where
o, = (— l)n’_[—l {%anma(” +1+1
1/2

—0)Fy_ i (n—1—1) x Fy_;_(2n') (8)
Xoim (85 7) = R (L, 1) S (6, 9) 9)
Ri(G.r) = (20)" P[22 e e (10)

Here y,,;,,(¢,7) are the normalized STOs and Fy(n)=n!/
[s!(n—s)!] is the binomial coefficient.

Now we can obtain the expansion theorem for the
product of two W*-ETOs by representing it as a finite sum
of Y*-ETO terms:

\Pa*nlm (é’a 7) Z’l’m’ (§/> ?)

n+n'+1N-1 L

32 * —»
= (29)" Z > Z N (8,2 g (2, F)

N=1 L=0M= (11)
where z=(+{"and
BZ;Z{‘n/l/ /(C C 2 )3/2/l}’ 'l'm! é’a )
W (AP (2 EE (12)
ope?) = (1) Winle.?) = RoCnSn0) - (13
Rien = (3) mc) (14)

Here we have taken into account the orthonormality
relation of lI’Zlm—ETOswith‘I’:,m—ETOs functions (see

Eq. (4) of [11]):

/\Pnlm lP /l/m/(gv )

/\Pnlm < ) a’]’ ’(g? )dg_’_énnlélllémm

(15)

Thus, the coefficients BO‘NL M, are obtained by

multiplying Eq. (11) by Wy,/,.(z,7) and taking into
account the fact that the functions W%, (z,7) are
orthogonal with the weight (N/zr)".

It is easy to show that the Wzlm—ETOs are also
represented as finite linear combinations of STOs:

o~ |2H =) 172
(2]’1) Z ® l/ |:( ((2n/)?)):| .

n'=1+1
X! —aim (47 7)
Note that the scale parameter of the function
Wi, (2, 7) in Eq. (11) must be z=(+¢, because of addition

of the exponents of the functions (2).
Now using Egs. (6), (7), (16) and the result [14]

i i(2L+ >/2

|l l/| M=—I

W(C.7) =

(16)

S;F (9 (D)S[/ ! 9 (0

- CHMI (fm, Im)AM S5,,(6,9)  (17)

we get from Eq. (12)

2L+ 1
B .00 = (!

n n N

x(2N)* Y >

k=41 /=] +1 K=L+1

/ P k+1/2 o K'+1/2
(k+K+K -« 1)!<§> <£) (18)

1/2
> CHM| (im, I'm)AM |

ol ol al
00,11y Oy -

[(2k)! (2K )1 (2K)1? \z z
where
Oy  for complex S,
Alrl:m/ = 1 mfm/ 1/2
V2 (2 B ‘nmm’ ) 5M.,£|m7m’|
+ﬁ”ﬁ;/m M|mn | for real Sj,,. (19)

Here the symbol e= &,,,,; may have the values +1 the
sign of which is determined by the product of the signs m
and m' (the sign of zero is regarded as positive). The

symbol n’"i/m/ may be have the values 1 and 0: if among

the indices m, m’ and m=m there occurs a value equal to



/. . . . .
zero, then n’”i,’” is also zero; if all the indices differ from

mim

zero, 1" =+l and the sign is determined by the
product of the signs of m, m and mzm. Thus the
coefficients Afzfm, differ from zero only with the values
M=m'-m', m+m’'. Therefore, in the case of real spherical
harmonics in Eq. (17), we have two kinds of coefficients

cHm="| and ™| determined by

L [ /

LM oo ) Co(lmI'm')  for|M| = [m —m'|

o m, U { CLlim, I —m') for|M| = |m + |
(20)

where C(Im,I'm") is the known Gaunt coefficient.

As can be seen from Eqgs. (11) and (18), the resulting
expansion of the product of Y*ETOs is a finite sum of
WY-ETOs terms, that is the expansion theorem for
complete orthonormal sets W*-ETOs in the coordinate
representation.

Momentum representation

The W*-ETOs and ¥*—ETOs in the momentum repre-
sentation are defined as the Fourier transforms of the
functions (6) and (13), respectively:

() = a2 [ e G

@ (0F) = Cn) " [T, 017

Taking into account Eqgs. (6) and (16) in Egs. (21) and
(22) we obtain:

@)

(22)

Gl Z hurtinn(¢.5) (23)
=l+1
&, (0 F) = @0 Y w0t {%} "
n' =l+1
U-aan(¢:F) (24)

where U, (C , I;) is the Fourier transform of the STOs:

(R

It should be noted that the Fourier transformations convert
the functions

yim (C k) nlm <§ ) E) and Uy (§ ) E)

into the functions

nlm (é’, ) Zlm (Cv ?) and Xnim (ga ?) :

(25)

. 1/2
jitkr) = (5) i k)
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W67 = (20 [ e, (¢ F) 'k (26)
W5,(7) = 20 [ T (R 27)
tan(€.7) = (20 [ U, (0. F) R (28)

In order to calculate U, <§ ,l?) we use the known

expansion of e into a series over the spherical

harmonics:
o 00 1 _ R
& =4n 3" 37 jikr) S (F/r)S i (k/k) (29)
=0 m=-—1

where S, (l?/ k) = (—i)lSlm (I_c'/ k) is a modified spherical
harmonic in momentum space, ji(kr) is the spherical
Bessel function. The functions ji(kr) can be expressed in
terms of Bessel functions of the first kind in the form

[15]:
. (30)

With the calculation of integral (25) we also take into
account the result [12]

o0

/ e_gr.llﬂ/z(kr)r”l/zdr

0 1 / X n+142
=—I(n—D(2k ”'2<—> CHl(x 31
7 (n — D!(2k) ; i (%) (31)
where x = {/1/¢* + k?and CP(x) is the Gegenbauer poly-
nomial defined by [12]
E(n/2)
Chlx) = Y (~1)dys(20"™> (32)
s=0
where
1 1 .,
B/ =3 |n =501~ (17
and
AP =Fs ((B—1+n—s)Fy(n—ys) (33)

Substituting Eq. (29) into the integral in Eq. (25) and
using Eq. (31) one gets:

Unim (Q ié) = Qu(¢, k)Sim <§>

where Q,/({,k) is the radial part of STOs in the
momentum representation determined by

2 ) (n — 1))
&2 /r(2n)!

(34)

Ou(C k) = w1 —2) Pty (35)
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As can be seen from Eqgs. (34) and (35), the radial part
of STOs in the momentum representation is determined
by the Gegenbauer polynomials.

Thus the resulting formulaec for the W*—ETOs

and ¥"—ETOs in the momentum representation are

5, (¢.K) =T (&,K)Sim (g)
%, (c8) = (5 ) @in(cF) - ”‘nz@,k)slm(%)

(36)

where (37)
I (¢ Z 0,0, (L k) (38)
n'=I+1
n " — 1/2
k) = o Y- ot [ 0y e
n'=l+1 : (39)

It should be noted that the functions @Y, (§ , I?)

obtained from the Fourier transformation of W*-ETOs
are orthonormal with the weight (n/¢k)* where a=1, 0,
-1, -2, ...:

/

/ @, (¢.F) ( §k>a G (C.F) 0

/ O, (€ F) B () &K = 8,080,
(40)

Thus, the Fourier transforms of W%ETOs in the
momentum representation are also complete orthonormal
sets of functions and are expressed in terms of Fourier
transforms of STOs by the finite linear combinations (see
Egs. (23) and (24)).

Now we are able to obtain the expansion theorem for
the product of W*-ETOs in the momentum representation.
Using the orthonormality relation (40) one gets the
following infinite series:

I (A L ()
_3/2 oo N—1 L aNLM .
) Z Z Z nlmap! I!'m! g g g) (DNLM (ga )
N=l L=0 M—L
where (41)

{=((+{)/2and

(2L + 1) 2™ (i, ' AM

Diatint (6:6'€) =

n /

x(2N)* Y Z AR
s=I+1g/ =)/ +1 S=L+1
S 1/2
.M S— t}ﬁ(g g g) (42)

[(25)}1/2 sls

Here the coefficients , y (C e ) are determined by

means of radial parts of STOs in the momentum
representation:

oLl
= V2@ [ Qule Q€' 10w € Rk

0 (43)
where both the functions @,

(§ , l?) and @7, (C ,ic) depend on the same parameter

¢=¢', the infinite series (41) is reduced to the finite sum:

A (L ()

n4n'+1N=1 L

=O7 330 3 Dl Pl (¢.%)

N=1 L=0M=

It should be noted that for ¢=¢', the coefficients
“NL%, /(¢,¢',¢) and nln’l’ (¢,¢,¢) determined by the

nlm,n
relations (42) and (43) do not depend on the parameters ¢,
ie.

In the case

(44)

ngnLn/l’ / ngn ' l'm ’(g g g) and in nll = erjll,;z/l/ <C’ g’ C)
The relationships for Q' ,, are obtained in the Appendix.

The difficulty in the problem of the finite sum expansion
of the ®* product in the case where they depend on
different parameters {and ¢’, lies completely in the fact

that the function @f,,, (Z, l_c') on the right-hand side of
Eq. (41) is represented by the parameter ¢ # ¢ +¢'.

Addition theorems for ¥* and ®“ functions

In order to obtain the addition theorems for ¥Y*-ETOs in
coordinate and momentum spaces, we use the following

expansions of e ¥ and e*” into series over the orbitals

v, (¢, F) and @, (g“ , I?), respectively:

e*i’?7 = (2%)3/22 az/LM (57 ]?) WY (&, 7) (45)
NLM
ek — (27)% 22 P (& F) Py <§ ’ ]_é) (46)

NLM

Equations (45) and (46) can easily be derived by means of
the orthonormality relations (15) and (40), and the Fourier
transformations (21), (22), (26) and (27).

Coordinate representation

Let us consider the Fourier transform of the function

lIlZlm (§7 rF— ﬁ)’



\I’Zlm (g F— ﬁ) = (27[)3/2/ eiic‘(?il_é) nlm (g k) d3
(47)
Substituting the expansion (46) into the integral in (47),

one obtains:
E ‘P W / / —ikR

/l/ /

®, (¢.8) 0, () aE

Next we use the expansion (41) and Eq. (26) to give
3/2 00 W'=1 I
R =(7) T ¥
=1/= -1

Dl st (6:¢':8) Wi (€ k)) :
N=1 L=0 M=—L

. Fsiz/l/m/ (g/, 7) (49)

The expansion (49) enables one to formulate a theorem on
the representation of W*-ETOs, depending on the parameter
£, in terms of the functions depending on another parameter
. This representation may be useful in applications.

Thus, we have proven the desired addition theorem for
WY*ETOs in coordinate space: any W*ETOs with the
difference of the radius vectors, 7 — R, as its argument is
expanded into a series over products of W*ETOs

depending on 7 and I_é, separately.

nlmgr—

(48)

Momentum representation

In order to obtain the addition theorem for WY*-ETOs in
momentum space, we consider the Fourier transform of
ETOs,

@, (6K - 5) = (2m) 2 [ P, (¢ P

Applying expansion (45) to the exponential, one has

@, (k- p) = > (¢1F) / o

/I/ /
o (6T

nlm (47 ) (5 1)

Now we take into account expansion (11) and Eq. (21).
Then, finally, we obtain:

(50)

0 n'—1

LDy 3

=110'=0 m'=-1

n+n'+1 N—1 L
(Z Z > Bt (.8 >d>m<z,ﬁ>>-

@, (¢K-5) = (

(52)
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BN, (¢.¢ 2 for{ = ¢ do

nlm,n
not depend on the parameter ¢, i.e. BO‘NL"?I, , =

- nlmp'l'm
lex‘l n/]/ /(g C 2§)

We notice that the function @), (é’ , k— ﬁ) is factor-

Here the coefficients

ized in the ®“ functions depending onk and D, separately,
and on the parameters ¢ and z ={+ {, respectively. The
parameter { is arbitrary and may be chosen appropriately
for any particular calculation in the theory of molecules.

Thus, we have considered the addition and expansion
theorems for WY*ETOs, in both coordinate and momen-
tum spaces, and have found a relationship between them.

Arbitrary multicenter multielectron integrals
of Y*-ETO0s

We are now able to consider the multicenter multielectron
integrals of W*-ETOs appearing in the MO LCAO method
of the quantum theory of molecules. Since the WY*-ETOs
are expressed in terms of STOs, according to Eq. (6),
these integrals can be reduced to multicenter multielec-
tron integrals over STOs. Using the translation formulae
of STOs obtained in [11] with the help of WY*-ETOs, one
can derive the series expansion formulae for the multi-
center molecular integrals with an arbitrary s-electron
operator (s=1, 2, 3, ...) in terms of overlap integrals with
the same screening parameter of STOs.

Our next subject is the overlap integrals over STOs
with the same screening parameter, which occur in the

multicenter multielectron integrals of W*-ETOs. The
integral under consideration has the form
Snlmn’l’m/ (Ca ) /anm(gv )Xn/l/ /(€>r _R)dSF (53)

For the evaluation of integral (53), we use Eq. (28) for
Fourier transform of STOs. Then we obtain:

Sumattnt (&3 R) = / ﬂkRU;lm (g“, E) '

Uy (g, 1}’) &F

where U, (C , ié) is determined by Egs. (34) and (35).

Now we expand the product of two functions on the
right-hand side of Eq. (54) in terms of the W*-ETOs in the
momentum representation:

U sin(§.K) U (6,)

(54)

ntn+1N=1 L .
(rf) 2T NN M i (¢F)
N=1 L=0M=—1I (55)
where a=1, 0, —1, -2, ... and
gll;]nljrltl;[l’m’ = / U;:lm (g’ ]_é) Un’l’m’ (§7 ié) '
B (6, F) &K (56)
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Here we have taken into account the orthonormality
relation (40).
Using Eq. (23) one can prove the following identity:

nin FIN=1 L
§ : § : § : aNLM ok 7
Mnlm 2 ’q)NLM (é/’ k)
N=1 L=0 M=
nn/+1N—1 L ntn' +1
aN'LM
Z Z Z wN/NMnlmn/l/ /
N=1 L=0M=—1 \ N'=N

ar(0F)

Now we take into account Eq. (24) in Egs. (56) and
(57). Then we finally obtain for the expansion of the
product of Fourier transforms in terms of their linear
combinations the following relation:

(57)

5 3 2n-&-n +1N-1 L
nlm (C> )Un/l/m/ (C7k> = (27[4/)_\/ Z '
N=1 L=0 M=-L
ntn'+1
( Z QNNI 1)Trlt\;m n'l'm! ) I?IZM <§7 k)
N'=L+1
(58)
where
12 N
i _ [2(]{ — Ot)}' o ol
Q. (N) = [W /72 2n') 0% o
n'=max(n,x) (59)
3 = =
TZan[ffz’l'm’ = (277’{)2/ U*nlm (C?k) Un/l/m/ (C?k)
Uy (6,8) &% = (1) D2 n(ar
—i—l))l/zCLlM‘(lm,l/ )AM QN o (60)

where Q" is determined by Eq. (69) of the Appendix.

Now we are able to calculate the overlap integrals of
STOs with the same screening parameter. Substitute
expansion (58) into the integral in (54) and use Eq. (28)
and the result is

Snlm,n/l/m’ (ga I_é)

nn/ +1N=1 L
= Z nlmn’l’ v (& ) (61)
N=1 L=0M=-I
where a=1,0,—1,-2,... and
n+n' +1
Z;XqL%’ = Z QNN/ n+n' + I)TZ;L,%W (62)

N'=1

Thus, the sets of formulae for overlap integrals with
the same screening parameter are determined solely from
the linear combination of STOs.

On the basis of the addition and expansion formulae
obtained in this paper, we constructed a program for
evaluating the multicenter electron-repulsion integrals
with STOs:

Ly it (6161 62,853 Reas Ry, Raa)
:/X;i(glaFal)xpa (g/la?cl)'

1 - * /=
E%pz (CZ? th)%pé (gzv rdZ)dVldVZ
where

_ f— I P 33 33
pi = nilim;, p; = nilim;, Ry = Ry — Ry,

Foi =T, —I_ég (i=1,2and g =a,b,c,d); F; andl_ég
are the radius vectors of electron and nucleus relative to
the molecule-fixed axes centered at a reference origin O.
The results of the calculation in atomic units for the
two-center hybrid, two-center Coulomb, and two-center
exchange electron-repulsion integrals obtained with a
Pentium III 800 MHz computer (using the TURBO
PASCAL 7.0 language) are shown in Tables 1 and 2. The
comparative values obtained from the expansion of
different W*-ETOs are shown in these tables. We see
from the tables that the computation time and accuracy of
the computer results for different expansion formulae
obtained from W°-ETOs, W!-ETOs, and W!-ETOs are
satisfactory.

Table 1 Comparison of methods of computing two-center electron-repulsion integrals over STOs obtained in the molecular coordinate
system in a.u. for N=N=15, 6.,=120°, ¢,=180°, 84p=120°, 9ar=180°, Op,=30°, p,=90°

ny ll ny C] I’l’l l,l m’l gll ny 12 my 42 n’z 1,2 m’2 Clz

2 1 0 6.5 2 1 0 4.4 2 1 0 4.6 2 1 0 3.1
2 1 1 56 2 1 1 2.4 2 1 0 8.4 2 1 0 53
2 1 1 8.5 2 1 1 6.2 2 1 1 7.8 2 1 1 6

3 2 1 48 3 2 1 2.6 3 1 1 3.7 2 1 1 1.6
2 1 0 64 2 1 0 4.2 2 1 0 53 2 0 0 3.1
2 1 1 86 2 1 1 54 2 1 1 7.5 2 1 1 53
3 2 0 106 3 2 0 7.5 2 1 1 9.7 2 1 1 8.5
3 2 1 8.1 3 2 1 5.7 2 1 1 6.9 2 1 1 4.8
2 1 0 58 2 1 0 6.3 2 1 0 5.8 2 1 0 6.3
2 1 0 7.5 1 0 0 4.6 2 1 0 7.5 1 0 0 4.6
2 1 1 87 2 1 0 6.4 2 1 1 8.7 2 1 0 6.4
2 1 1 58 2 1 1 2.6 2 1 1 5.8 2 1 1 2.6
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Table 2 Comparison of methods of computing two-center electron-repulsion integrals over STOs obtained in the molecular coordinate

system in a.u. for N=N'=

15, =120, $,=180°, 03y=120°, $r=180°, Gp=30°, $,,=90°

R, Ry, Ry, Eq. (<equationcite>63</ Eq. (<equationcite>63</ Eq. (<equationcite>63</ CPU (ms)
equationcite>), a=1 equationcite>), a=0 equationcite>), a=—1
0 04 0 9.5797637176E-1 9.5797637176E-3 9.5797637175E-3 27.1
0 2.8 0 —1.8679407277E-5 —1.8679407264E-5 —1.8679407258E-5 422
0 3.2 0 4.4165329011E-7 4.4165329113E-7 4.4165329314E-7 47.2
0 1.3 0 2.5574326839E-1 2.5574326815E-1 2.5574326827E-1 65.8
0 0 0.3 —1.3317612696E-1 —1.3317612694E-1 —1.3317612677E-1 234
0 0 33 2.4435258748E-1 2.4435258746E-1 2.4435258729E-1 29.0
0 0 43 2.0741168617E~1 2.0741168617E-1 2.0741168625E~1 453
0 0 7.6 1.0881681470E-1 1.0881681467E—-1 1.0881681455E~-1 53.8
0.8 0.8 0 1.3429866341E-2 1.3429866361E-2 1.3429866237E-2 65.5
2 2 0 2.2546218186E-5 2.2546218241E-5 2.2546218311E-5 57.4
2.5 2.5 0 4.5310176221E-5 4.5310176184E-5 4.5310176400E-5 68.7
14 14 0 5.2992746237E-2 5.2992746177E-2 5.2992745732E-2 82.6
Appendix o, = [Fl n)Fy(n')FL(N) \/Fn(zn)Fn,(zn/)FN(zN)}

As can be seen from Egs. (60), (61) and (62), the overlap
integrals with the same screening parameter are expressed
through the integral

N = VA / 0u(E. k)0, (€. QN (¢ Kk
(64)
where Q,/({ k) is determined by the Gegenbauer polyno-
mials (Eq. (35)). Using Egs. (32) and (33), we can easily
establish for the products of Gegenbauer polynomials the
following relations:

E(n/2)+E(n/2)

> (-1

5s=0

/ ﬂi‘l/*S
1)) (20) 2

CP(x)Ch(x) = (65)

/ //
Cf (x) Cf/ (x) Cf// (x)
E(n/2)+E(n' /2)+E(n" /2)

= > (— 1)@l (2xy e

>~

Y:O nn'n’s 66
where (66)
E(n/2) ,
rm K Z d’fm zl:s —m (67)
=0
ﬁﬁ ﬂ// n/2 / //
rm’n”s Z nm n’n"s m (68)
Now using Eq. (66) and the result [12]
1
(2n—1)!
= 69
/F — 2 2l (69)
0

we get from Eq. (64)

s g+ 1,041,041
x Z (_1) dnfl,nlfl/,nfL,sb”JF”/JFN‘F1*g*l\'vg

(70)

() () (M)

_ i (=1)"2¥ 2, (4 1) F iy (2(i +m) — 1)

m=0
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